4.6 Article

Redifferentiation of dedifferentiated chondrocytes and chondrogenesis of human bone marrow stromal cells via chondrosphere formation with expression profiling by large-scale cDNA analysis

Journal

EXPERIMENTAL CELL RESEARCH
Volume 288, Issue 1, Pages 35-50

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/S0014-4827(03)00130-7

Keywords

dedifferentiation; redifferentiation; chondrocytes; marrow stroinal cells; regeneration; stem cells; transplantation

Ask authors/readers for more resources

Characterization of dedifferentiated chondrocytes (DECs) and mesenchymal stem cells capable of differentiating into chondrocytes is of biological and clinical interest. We isolated DECs and bone marrow stromal cells (BMSCs), H4-1 and H3-4, and demonstrated that the cells started to produce extracellular matrices, such as type II collagen and aggrecan, at an early stage of chondrosphere formation. Furthermore, cDNA sequencing of cDNA libraries constricted by the oligocapping method was performed to analyze difference in mRNA expression profiling between DECs and marrow stromal cells. Upon redifferentiation of DECs, cartilage-related extracellular matrix genes, such as those encoding leucine-rich small proteoglycans, cartilage oligomeric matrix protein, and chitinase 3-like 1 (cartilage glycoprotein-39), were highly expressed. Growth factors such as FGF7 and CTGF were detected at a high frequency in the growth stage of monolayer stromal cultures. By combining the expression profile and flow cytometry, we demonstrated that isolated stromal cells, defined by CD34(-), c-kit(-), and CD140alpha(-) (or low), have chondrogenic potential. The newly established human mesenchymal cells with expression profiling provide a powerful model for a study of chondrogenic differentiation and further understanding of cartilage regeneration in the means of redifferentiated DECs and BMSCs. (C) 2003 Elsevier Science (USA). All fights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available