4.5 Article

Single-particle fluorescence spectrometer for ambient aerosols

Journal

AEROSOL SCIENCE AND TECHNOLOGY
Volume 37, Issue 8, Pages 628-639

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/02786820300904

Keywords

-

Ask authors/readers for more resources

A fluorescence particle spectrometer (FPS) for real-time measurement of the fluorescence spectra of aerosol particles in the size range 1-10 mum diameter is reported. The prototype FPS has a sufficiently high sample rate (from 5 to 28 l/min for 3.5 mum to 11 mum diameter particles) to measure aerosol within buildings at practical rates (from 1 up to 600 particle fluorescence spectra per minute). Previously reported bioaerosol prototype detectors for measurement of single particle spectra (Pan et al., Opt. Lett., 24, 116-118 (1999); Hill et al., Field Anal. Chem. Tech., 3, 221-239 (1999)) were unable to sample the ambient environment; air containing particles had to be forced under pressure into a sample cell. In addition, sample rates were so small (less than 0.01 l/min) as to be impractical for most applications. The present design overcomes these deficiencies by the use of an airtight cell that highly concentrates micrometer-sized particles. A virtual impactor first concentrates aerosol particles, which are then drawn under negative pressure through an aerodynamic focusing nozzle in the inlet of the instrument, through the sample region, providing further concentration. The rate of particle spectra measured by the FPS increases significantly when the particle inlet is within a few meters of some common sources of indoor biological particles, e. g., a person coughing, sneezing, or rubbing his skin, or the presence of a dog. The spectra obtained have a variety of spectral shapes. The FPS may be useful in a variety of areas, e. g., in studying and monitoring airborne particles that cause diseases or allergies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available