4.4 Article

Differential effects of ethanol on GABAA and glycine receptor-mediated synaptic currents in brain stem motoneurons

Journal

JOURNAL OF NEUROPHYSIOLOGY
Volume 90, Issue 2, Pages 870-875

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00119.2003

Keywords

-

Funding

  1. NHLBI NIH HHS [HL-49657] Funding Source: Medline
  2. NIGMS NIH HHS [GM-07270] Funding Source: Medline
  3. NINDS NIH HHS [NS-14857] Funding Source: Medline

Ask authors/readers for more resources

Ethanol potentiates glycinergic synaptic transmission to hypoglossal motoneurons (HMs). This effect on glycinergic transmission changes with postnatal development in that juvenile HMs (P9-13) are more sensitive to ethanol than neonate HMs (P1-3). We have now extended our previous study to investigate ethanol modulation of synaptic GABA(A) receptors (GABA(A) Rs), because both GABA and glycine mediate inhibitory synaptic transmission to brain stem motoneurons. We tested the effects of ethanol on GABAergic and glycinergic miniature inhibitory postsynaptic currents (mIPSCs) recorded from neonate and juvenile rat HMs in an in vitro slice preparation. Bath application of 30 mM ethanol had no significant effect on the GABAergic mIPSC amplitude or frequency recorded at either age. At 100 mM, ethanol significantly decreased the GABAergic mIPSC amplitude recorded from neonate (6 +/- 3%, P < 0.05) and juvenile (16 +/- 3%, P < 0.01) HMs. The same concentration of ethanol increased the GABAergic mIPSC frequency recorded from neonate (64 +/- 17%, P < 0.05) and juvenile (40 +/- 15%, n.s.) HMs. In contrast, 100 mM ethanol robustly potentiated glycinergic mIPSC amplitude in neonate (31 +/- 3%, P < 0.0001) and juvenile (41 +/- 7%, P < 0.001) HMs. These results suggest that glycine receptors are more sensitive to modulation by ethanol than GABA A receptors and that 100 mM ethanol has the opposite effect on GABA(A) R-mediated currents in juvenile HMs, that is, inhibition rather than enhancement. Further, comparing ethanol's effects on GABAergic mIPSC amplitude and frequency, ethanol modulates GABAergic synaptic transmission to HMs differentially. Presynaptically, ethanol enhances mIPSC frequency while postsynaptically it decreases mIPSC amplitude.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available