3.8 Article

Near-infrared raman spectroscopy of human coronary arteries:: Histopathological classification based on mahalanobis distance

Journal

JOURNAL OF CLINICAL LASER MEDICINE & SURGERY
Volume 21, Issue 4, Pages 203-208

Publisher

MARY ANN LIEBERT INC PUBL
DOI: 10.1089/104454703768247774

Keywords

-

Ask authors/readers for more resources

Objective: In this study, near-infrared Raman spectroscopy (NIRS) was used for evaluation of human atherosclerotic lesions using a simple algorithm based on discriminant analysis. The Mahalanobis distance was used to classify the clustered spectral features extracted from NIRS of a total of 111 arterial fragments of human coronary arteries. Background Data: Raman spectroscopy has been used for diagnosis of a variety of diseases. For real-time applications, it is important to have a simple algorithm that could perform fast data acquisition and analysis. The ultimate goal is to obtain a feasible diagnosis, which discriminates various atherosclerotic lesions with high sensitivities and specificities. Materials and Methods: Non-atherosclerotic (NA) arteries, atherosclerotic plaques without calcification (NC), and atherosclerotic plaques with classification (C) were obtained and scanned with an NIR Raman spectrometer with 830-nm laser excitation. An algorithm based on the discriminant analysis using the Mahalanobis distance of the clustered spectral features was used for tissue classification into three categories: Na, NC, and C. Results: Human coronary arteries exhibit different spectral signatures depending on different bio-chemicals present in each tissue type such as collagen, cholesterol, and calcium hydroxyapatite, respectively. It is shown that our algorithm has a maximum sensitivity and specificity of 85% and 89%, respectively, for the diagnosis of the NA tissue type, 85% and 89% for the NC tissue type, and 100% and 100% for the C tissue type. Conclusion: An algorithm (with a minimum of mathematical and computational requirements) based on the discriminant analysis of spectral features has been developed to classify atherosclerotic lesions with high sensitivities and specificities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available