4.5 Article

Antioxidant ameliorates cisplatin-induced renal tubular cell death through inhibition of death receptor-mediated pathways

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY
Volume 285, Issue 2, Pages F208-F218

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajprenal.00311.2002

Keywords

Fas; tumor necrosis factor receptor 1; reactive oxygen species; apoptosis; necrosis

Ask authors/readers for more resources

We have recently demonstrated the direct involvement of the death receptor-mediated apoptotic pathways in cisplatin-induced renal tubular cell (RTC) death. Reactive oxygen species are thought to be a major cause of cellular damage in such injury. The aim of this study was to examine the mechanism through which antioxidants ameliorate cisplatin-induced RTC death, with special emphasis on death receptor-mediated apoptotic pathways. Cisplatin was added to cultures of normal rat kidney (NRK52E) cells or injected in rats. NRK52E cells and rats were also treated with dimethylthiourea ( DMTU), a hydroxyl radical scavenger. We then examined the mRNA levels of death ligands and receptors, caspase-8 activity, cell viability, cell death, renal function, and histological alterations. RTPCR indicated cisplatin-induced upregulation of Fas, Fas ligand, and TNF-alpha mRNAs and complete inhibition by DMTU in vitro and in vivo. Cisplatin increased caspase-8 activity of NRK52E cells, and DMTU prevented such activation. Exposure to cisplatin reduced viability of NRK52E cells, examined by WST-1 assay, and increased apoptosis and necrosis of the cells, examined by terminal deoxynucleotidyl transferase dUTP nick-end labeling assay and fluorescence-activated cell sorter analysis. DMTU abrogated cisplatin-induced changes in cell viability and apoptosis and/or necrosis. Cisplatin-induced renal dysfunction and histological damage were also prevented by DMTU. DMTU did not hinder cisplatin incorporation into RTCs. Our results suggest that antioxidants can ameliorate cisplatin-induced acute renal failure through inactivation of the death receptor-mediated apoptotic pathways.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available