4.6 Article

A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages

Journal

ELECTROCHEMISTRY COMMUNICATIONS
Volume 5, Issue 8, Pages 662-666

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/S1388-2481(03)00148-6

Keywords

direct methanol fuel cell; alkaline membrane; thermodynamics; methanol oxidation; carbonate/bicarbonate; FTIR

Ask authors/readers for more resources

As the proton exchange membrane direct methanol fuel cell (PEMDMFC) faces sustaining obstacles, alkaline membrane direct methanol fuel cell (AMDMFC) is attracting increasing attention. Although some advantages may be expected, the feasibility of AMDMFC does not seem well verified. In this paper, thermodynamic disadvantages and kinetic advantages of AMDMFC are elucidated. In thermodynamic aspect, a large voltage loss due to the pH difference across the membrane is predicted by theoretical calculation; in kinetic aspect, besides the well-known superiority of alkaline media for oxygen reduction, experimental data show much higher anodic performance in carbonate/bicarbonate than in acid. In-situ FTIR measurements indicate that methanol can be fully oxidized to carbon dioxide in carbonate/bicarbonate as in sulfuric acid. Taking into account all the foreseeable advantageous and disadvantageous factors, AMDMFC is worth study, and an alkaline membrane stable at elevated temperatures is the prerequisite for a successful AMDMFC. (C) 2003 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available