4.5 Article

Protein flexibility and conformational state: A comparison of collective vibrational modes of wild-type and D96N bacteriorhodopsin

Journal

BIOPHYSICAL JOURNAL
Volume 85, Issue 2, Pages 1269-1277

Publisher

CELL PRESS
DOI: 10.1016/S0006-3495(03)74562-7

Keywords

-

Categories

Funding

  1. NIGMS NIH HHS [R01 GM034548, R01 GM034548-15] Funding Source: Medline

Ask authors/readers for more resources

Far infrared ( FIR) spectral measurements of wild-type (WT) and D96N mutant bacteriorhodopsin thin films have been carried out using terahertz time domain spectroscopy as a function of hydration, temperature, and conformational state. The results are compared to calculated spectra generated via normal mode analyses using CHARMM. We find that the FIR absorbance is slowly increasing with frequency and without strong narrow features over the range of 2-60 cm(-1) and up to a resolution of 0.17 cm(-1). The broad absorption shifts in frequency with decreasing temperature as expected with a strongly anharmonic potential and in agreement with neutron inelastic scattering results. Decreasing hydration shifts the absorption to higher frequencies, possibly resulting from decreased coupling mediated by the interior water molecules. Ground-state FIR absorbances have nearly identical frequency dependence, with the mutant having less optical density than the WT. In the M state, the FIR absorbance of the WT increases whereas there is no change for D96N. These results represent the first measurement of FIR absorbance change as a function of conformational state.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available