4.7 Article

Localization of PIP2 activation gate in inward rectifier K+ channels

Journal

NATURE NEUROSCIENCE
Volume 6, Issue 8, Pages 811-818

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nn1090

Keywords

-

Categories

Funding

  1. NINDS NIH HHS [NS45383] Funding Source: Medline

Ask authors/readers for more resources

Ion channels respond to changes in transmembrane voltage or ligand concentration by opening or closing an activation gate. In voltage-gated K+ channels, this gate has been localized to an intracellular bundle crossing. Here we examined whether this bundle crossing, or the more internal cytoplasmic pore, acts as a gate for PIP2 activation of inward rectifier K+ (Kir) channels expressed in Xenopus laevis oocytes. We studied the open/closed state-dependence of the accessibility of intracellular cationic modifiers to a position (residue Ile176 in the TM2 helix of Kir2.1) more external to the bundle crossing. Cd2+ blocked I176C mutant channels much more weakly in the closed state than in the open state, but Ag+ and sulfhydryl-specific methanethiosulfonate reagents modified the channels with similar rates in both states. These results suggest that the TM2 helices undergo conformation changes upon PIP2 binding/unbinding, but neither they nor the cytoplasmic pore close fully to form a physical gate for K+ conduction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available