4.3 Article

Alkaline composite film as a separator for rechargeable lithium batteries

Journal

JOURNAL OF SOLID STATE ELECTROCHEMISTRY
Volume 7, Issue 8, Pages 492-496

Publisher

SPRINGER
DOI: 10.1007/s10008-003-0375-y

Keywords

composite film; high-rate performance; ionic conductivity; lithium-ion battery; separator

Ask authors/readers for more resources

We report a new type of separator film for application in rechargeable lithium and lithium-ion batteries. The films are made of mainly alkaline calcium carbonate (CaCO3) and a small amount of polymer binder. Owing to porosity and capillarity, the composite films show excellent wettability with non-aqueous liquid electrolytes. Typically, the composite films composed of CaCO3 and Teflon and wetted with 1 M LiPF6 dissolved in a solvent mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (30:70 wt%) exhibit an ionic conductivity as high as 2.5-4 mS/cm at 20degreesC, in a comparable range with that (3.4 mS/cm) of the commercial Celgard membrane. In the batteries, the composite film not only serves as a physical separator but also neutralizes acidic products, such as HF formed by LiPF6 hydrolysis, as well as those formed by solvent oxidative decomposition. A Li/LiMn2O4 test cell was employed to examine the electrochemical compatibility of the composite film. We observed that the composite film cell showed an improved cycling performance since the alkaline CaCO3 neutralizes the acidic products, which otherwise promote dissolution of the electrode active materials. More importantly, the composite film cell displayed a superior performance on high-rate cycling, which was probably the result of the less resistive interface formed between the electrode and the composite film.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available