4.5 Article

Sonochemical method for the synthesis of antimony sulfide microcrystallites with controllable morphology

Journal

JOURNAL OF MATERIALS RESEARCH
Volume 18, Issue 8, Pages 1804-1808

Publisher

MATERIALS RESEARCH SOCIETY
DOI: 10.1557/JMR.2003.0250

Keywords

-

Ask authors/readers for more resources

Spindlelike, rodlike, starlike, and spherical antimony sulfide (Sb2S3) microcrystallites have successfully been synthesized via a sonochemical method at room temperature. The x-ray diffraction pattern analysis based on the Rietveld method demonstrates that ultrasound can convert the structure of Sb2S3 from amorphous phase to crystalline phase. The crystallinity and morphology of Sb2S3 particles can be modified by using different solvents or solutions. It is found that the spindlelike and starlike particles result from the aggregation of nanoparticles while the rodlike particles arise from epitaxial growth. Due to the quantum confinement effect of charge carriers in small microcrystalline volumes, the characteristic peaks in the optical absorption spectrum of the synthesized 0.001 M Sb2S3 (<100 nm) colloidal solutions are blue-shifted by about 500 nm as compared to the bulk band gaps of Sb2S3.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available