4.4 Article

Are poly(ADP-ribosyl)ation by PARP-1 and deacetylation by Sir2 linked?

Journal

BIOESSAYS
Volume 25, Issue 8, Pages 808-814

Publisher

WILEY
DOI: 10.1002/bies.10317

Keywords

-

Ask authors/readers for more resources

Poly(ADP-ribose) polymerase-1 (PARP-1) safeguards genomic integrity by limiting sister chromatid exchanges. Overstimulation of PARP-1 by extensive DNA damage, however, can result in cell death, as prolonged PARP-1 activation depletes NAD(+), a substrate, and elevates nicotinamide, a product. The decline of NAD(+) and the rise of nicotinamide may downregulate the activity of Sir2, the NAD(+)-dependent deacetylases, because deacetylation by Sir2 is dependent on high concentration of NAD+ and inhibited by physiologic level of nicotinamide. The Sir2 deacetylase family has been implicated in mediating gene silencing, longevity and genome stability. It is conceivable that poly(ADP-ribosyl)ation by PARP-1, which is induced by DNA damage, could modulate protein deacetylation by Sir2 via the NAD(+)/nicotinamide connection. The possible linkage of the two ancient pathways that mediate broad biological activities may spell profound evolutionary roles for the conserved PARP-1 and Sir2 gene families in multicellular eukaryotes. (C) 2003 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available