4.4 Article

Enhanced inverse bremsstrahlung heating rates in a strong laser field

Journal

PHYSICS OF PLASMAS
Volume 10, Issue 8, Pages 3385-3396

Publisher

AIP Publishing
DOI: 10.1063/1.1586917

Keywords

-

Ask authors/readers for more resources

Test particle studies of electron scattering on ions in an oscillatory electromagnetic field have shown that standard theoretical assumptions of small angle collisions and phase independent orbits are incorrect for electron trajectories with drift velocities smaller than quiver velocity amplitude. This leads to significant enhancement of the electron energy gain and the inverse bremsstrahlung heating rate in strong laser fields. Nonlinear processes such as Coulomb focusing and correlated collisions of electrons being brought back to the same ion by the oscillatory field are responsible for large angle, head-on scattering processes. The statistical importance of these trajectories has been examined for mono-energetic beam-like, Maxwellian and highly anisotropic electron distribution functions. A new scaling of the inverse bremsstrahlung heating rate with drift velocity and laser intensity is discussed. (C) 2003 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available