4.7 Article

The hierarchical formation of a stellar cluster

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 343, Issue 2, Pages 413-418

Publisher

WILEY-BLACKWELL
DOI: 10.1046/j.1365-8711.2003.06687.x

Keywords

stars : formation; stars : luminosity function, mass function; globular clusters : general

Ask authors/readers for more resources

Recent surveys of star-forming regions have shown that most stars, and probably all massive stars, are born in dense stellar clusters. The mechanism by which a molecular cloud fragments to form several hundred to thousands of individual stars has remained elusive. Here, we use a numerical simulation to follow the fragmentation of a turbulent molecular cloud, and the subsequent formation and early evolution of a stellar cluster containing more than 400 stars. We show that the stellar cluster forms through the hierarchical fragmentation of a turbulent molecular cloud. This leads to the formation of many small subclusters, which interact and merge to form the final stellar cluster. The hierarchical nature of the cluster formation has serious implications in terms of the properties of the new-born stars. The higher number-density of stars in subclusters, compared to a more uniform distribution arising from a monolithic formation, results in closer and more frequent dynamical interactions. Such close interactions can truncate circumstellar discs, harden existing binaries and potentially liberate a population of planets. We estimate that at least one-third of all stars, and most massive stars, suffer such disruptive interactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available