4.7 Article

Studies on the applicability of artificial neural network (ANN) in emulsion liquid membranes

Journal

JOURNAL OF MEMBRANE SCIENCE
Volume 220, Issue 1-2, Pages 155-164

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0376-7388(03)00226-6

Keywords

emulsion liquid membrane; artificial neural network; back-propagation algorithm; simulation; solute concentration in feed phase

Ask authors/readers for more resources

An artificial neural network (ANN) model of emulsion liquid membrane (ELM) process is proposed in the present study which is able to predict solute concentration in feed during extraction operation and ultimate % extraction at different initial solute concentration in feed phase, internal reagent concentration, treat ratio, volume fraction of internal aqueous phase in emulsion and time. Because of the complexity in generalization of the phenomenon of ELM process by any mathematical model, the neural network proves to be a very promising method for the purpose of process simulation. The network uses the back-propagation algorithm (BPA) for evaluating the connection strengths representing the correlations between inputs (initial solute concentration in feed phase, internal reagent concentration, treat ratio, volume fraction of internal aqueous phase in emulsion and time) and outputs (solute concentration in feed during extraction operation and % extraction). The network employed in the present study uses five input nodes corresponding to the operating variables and two output nodes corresponding to the measurement of the performance of the network (solute concentration in feed during extraction and % extraction). Batch experiments are performed for separation of nickel(II) from aqueous sulphate solution of initial concentration in the 200-100 mg/l ranges. The network employed in the present study uses two hidden layers of optimum number of nodes being thirty and twenty. A leaning rate of 0.3 and momentum factor of 0.4 is used. The model predicted results in good agreement with the experimental data and the average deviations for all the cases are found to be well within +/-10%. (C) 2003 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available