4.5 Article

LexA-independent DNA damage-mediated induction of gene expression in Myxococcus xanthus

Journal

MOLECULAR MICROBIOLOGY
Volume 49, Issue 3, Pages 769-781

Publisher

BLACKWELL PUBLISHING LTD
DOI: 10.1046/j.1365-2958.2003.03592.x

Keywords

-

Ask authors/readers for more resources

Myxococcus xanthus, a member of the Proteobacteria delta-class, has two independent recA genes, recA1 and recA2, but only recA2 is DNA damage-inducible. The lexA gene has been isolated from M. xanthus by PCR amplification with oligonucleotides designed after sequence identification by TBLASTN analysis of its genome at the Cereon Microbial Sequence Database. The M. xanthus purified LexA protein is shown to bind specifically to the consensus sequence CTRHAMRYBYGTTCAGS present upstream of lexA and recA2. A degenerate copy of this motif but with important differences can be identified in the region upstream of the recA1 gene. A knock-out lexA(Def) mutant that has been generated does not differ significantly from wild type in morphology, growth rate, light-induced carotenogenesis or development. Using transcriptional lacZ fusions and quantitative RT-PCR analysis, it has been demonstrated that expression of both lexA and recA2 genes is constitutive in the lexA(Def) mutant, whereas the transcription of the DNA damage non-inducible recA1 gene is not affected in this strain. recN and ssb, whose expression in Escherichia coli are LexA-regulated, are induced by DNA damage in the M. xanthus lexA(Def) mutant. These data reveal the existence of different regulatory mechanisms for DNA damage-inducible genes in bacteria belonging to different phyla.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available