4.4 Article

Computation of tsunamis in the East (Japan) Sea using dynamically interfaced nested model

Journal

PURE AND APPLIED GEOPHYSICS
Volume 160, Issue 8, Pages 1383-1414

Publisher

BIRKHAUSER VERLAG AG
DOI: 10.1007/s00024-003-2352-x

Keywords

tsunami; dynamically interfaced nested model; runup; distribution function

Ask authors/readers for more resources

A study of 1983 and 1993 tsunami events in the East (Japan) Sea using multigrid dynamically-interfaced finite difference models was performed to produce detailed features of coastal inundations along the eastern coast of Korea. The computational domain is composed of several subregions with different grid sizes connected in parallel or inclined directions. The innermost subregion represents the coastal alignment reasonably well and has a grid size of about 30 meters. Numerical simulations have been performed in the framework of shallow-water equations (linear, as well as nonlinear) over the plane or spherical coordinate system, depending on the dimensions of the subregion. Results of simulations show the general agreements with the observed data of the runup height for both tsunamis. The evolution of the distribution function of tsunami heights is studied numerically and it shows a tendency to the log-normal curve for a long distance from the source.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available