4.4 Article

Dynamic, thermodynamic, and kinetic basis for recognition and transformation of DNA by human immunodeficiency virus type 1 integrase

Journal

BIOCHEMISTRY
Volume 42, Issue 30, Pages 9235-9247

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi0300480

Keywords

-

Ask authors/readers for more resources

Specific interactions between retroviral integrase (IN) and long terminal repeats are required for insertion of viral DNA into the host genome. To characterize quantitatively the determinants of substrate specificity, we used a method based on a stepwise increase in ligand complexity. This allowed an estimation of the relative contributions of each nucleotide from oligonucleotides to the total affinity for IN. The interaction of HIV-1 integrase with specific (containing sequences from the LTR) or nonspecific oligonucleotides was analyzed using a thermodynamic model. Integrase interacted with oligonucleotides through a superposition of weak contacts with their bases, and more importantly, with the internucleotide phosphate groups. All these structural components contributed in a combined way to the free energy of binding with the major contribution made by the conserved 3'-terminal GT, and after its removal, by the CA dinucleotide. In contrast to nonspecific oligonucleotides that inhibited the reaction catalyzed by IN, specific oligonucleotides enhanced the activity, probably owing to the effect of sequence-specific ligands on the dynamic equilibrium between the oligomeric forms of IN. However, after preactivation of IN by incubation with Mn2+, the specific oligonucleotides were also able to inhibit the processing reaction. We found that nonspecific interactions of IN with DNA provide similar to8 orders of magnitude in the affinity (DeltaG(o) approximate to -10.3 kcal/mol), while the relative contribution of specific nucleotides of the substrate corresponds to similar to1.5 orders of magnitude (DeltaG(o) approximate to -2.0 kcal/mol). Formation of the Michaelis complex between IN and specific DNA cannot by itself account for the major contribution of enzyme specificity, which lies in the k(cat) term; the rate is increased by more than 5 orders of magnitude upon transition from nonspecific to specific oligonucleotides.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available