4.6 Article

First-principles calculations of intrinsic defects in Al2O3 -: art. no. 085110

Journal

PHYSICAL REVIEW B
Volume 68, Issue 8, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevB.68.085110

Keywords

-

Ask authors/readers for more resources

First-principles plane-wave pseudopotential calculations were performed to study electronic structures, structural relaxation, and energetics of intrinsic vacancies and interstitials in Al2O3. In the presence of the intrinsic point defects, extra levels appeared in the band gap. Considering various charge states for the intrinsic point defects, it was found that each point defect is most stable in its fully ionized state. From the formation energies of individual point defects, Schottky, O Frenkel, and Al Frenkel energies were also evaluated and were compared with previous results by experiment and static lattice calculations. Although previous static lattice calculations showed different relative stabilities of Schottky and Frenkel formation, depending on the choice of interatomic potentials, our calculations revealed that the relative values of formation energies are in the order of Schottky

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available