4.5 Review

SNARE regulators: matchmakers and matchbreakers

Journal

BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH
Volume 1641, Issue 2-3, Pages 99-110

Publisher

ELSEVIER
DOI: 10.1016/S0167-4889(03)00096-X

Keywords

Arf-GAP; complexin; Apg8/GATE-16; LMA1; Munc13; Munc18/Sec1; phosphorylation; SNARE; synaptophysin; synaptotagmin; tomosyn; Vsm1/Ddi1

Ask authors/readers for more resources

SNAREs (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors) are membrane-associated proteins that participate in the fusion of internal membranes in eukaryotic cells. SNAREs comprise three distinct and well-conserved families of molecules that act directly as membrane fusogens or, at the least, as elements that bring membranes into close apposition and allow for subsequent fusion events to occur. While the molecular events leading to fusion are still under debate, it is clear that a number of additional factors are required to bring about SNARE-mediated membrane fusion in vivo. Many of these factors, which collectively can be called SNARE regulators (e.g. Sec1/Munc18, synaptotagmin, GATE-16, LMA1, Munc13/UNC-13, synaptophysin, tomosyn, Vsm1, etc.), bind directly to SNAREs and are involved in the regulation of SNARE assembly as well as the ability of SNAREs to participate in trafficking events. In addition, recent studies have suggested a role for posttranslational modification (e.g., phosphorylation) in the regulation of SNARE functions. In this review the possible role of SNARE regulators in SNARE assembly and the involvement of SNARE phosphorylation in the regulation of intracellular membrane trafficking will be discussed. (C) 2003 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available