4.8 Article

Observing brownian motion in vibration-fluidized granular matter

Journal

NATURE
Volume 424, Issue 6951, Pages 909-912

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature01867

Keywords

-

Ask authors/readers for more resources

Observation of the rotational brownian motion(1,2) of a very fine wire immersed in a gas led to one of the most important ideas of equilibrium statistical mechanics. Namely, the many-particle problem of a large number of molecules colliding with the wire can be represented by just two macroscopic parameters: viscosity and temperature. Interest has arisen in the question of whether this idea (mathematically developed in the Langevin model and the fluctuation-dissipation theorem(3,4)) can also be used to describe systems that are far from equilibrium. Here we report an experimental investigation of an archetypal non-equilibrium system, involving a sensitive torsion oscillator immersed in a granular system(5,6) of millimetre-size grains that are fluidized by strong external vibrations. The vibro-fluidized granular medium is a driven environment, with continuous injection and dissipation of energy, and the immersed oscillator can be seen as analogous to an elastically bound brownian particle. By measuring the noise and the susceptibility, we show that the experiment can be treated (to a first approximation) with the equilibrium formalism. This gives experimental access to a granular viscosity and an effective temperature; however, these quantities are anisotropic and inhomogeneous. Surprisingly, the vibrofluidized granular matter behaves as a 'thermal' bath satisfying a fluctuation-dissipation relation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available