4.8 Article

Self-assembly, structure, and dynamic interconversion of metallosupramolecular architectures generated by Pb(II) binding-induced unfolding of a helical ligand

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 125, Issue 34, Pages 10257-10265

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja0301929

Keywords

-

Ask authors/readers for more resources

The binding of lead(11) cations to the terpyridine-type subunits of the helical ligand 1 leads to the self-assembly of different polynuclear metallosupramolecular architectures of nanometric size. Three different entities are generated and may be interconverted as a function of metal/ligand stoichiometry: a [4 x 4]-Pb-16(11) grid-type array 2, a [4 # 4]Pb-12(11) double-cross species 4, and an intermediate complex 3. The structures of 2 and 4 have been confirmed by X-ray crystallography; that of 3 is based on NMR spectral data. The interconversion of the three species generates dynamic diversity and represents an expression of constitutional dynamic chemistry. In the course of ion binding, the helical molecules of ligand 1 unwrap to yield fully extended strands arranged in perpendicular fashion in the architectures 2-4 generated. This process amounts to molecular motions in two directions which confer to the present systems characteristics of two-dimensional nanomechanical devices, capable of performing 2D-contraction/extension motions. The triple features of self-organization, dynamic interconversion, and potential addressability displayed by the processes described trace a self-fabrication approach to nanoscience and nanotechnology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available