4.5 Letter

Stacking faults in formation of silver nanodisks

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 107, Issue 34, Pages 8717-8720

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp0303826

Keywords

-

Ask authors/readers for more resources

Structural investigations by using high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) of silver nanodisks with different sizes are presented. The disks have a face centered cubic (fcc) crystal structure and their flat surfaces are (111). Stacking faults parallel to the (111) planes are frequently observed for the nanodisks. A unique (111) stacking fault model which is parallel to the flat (111) disk surface has been proposed to explain the observed 1/3{422} forbidden reflections in [111] SAED pattern and the corresponding 3 x {422} supperlattice fringes in the [111] HRTEM image. It is suggested that the presence of the stacking faults may be the key in the formation and growth of the disk morphology. This study may provide an insight to synthetically controlling particle shape and size through defect engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available