4.8 Article

Deformation and collapse of microtubules on the nanometer scale

Journal

PHYSICAL REVIEW LETTERS
Volume 91, Issue 9, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.91.098101

Keywords

-

Ask authors/readers for more resources

We probe the local mechanical properties of microtubules at the nanometer scale by radial indentation with a scanning force microscope tip. We find a linear elastic regime that can be described by both thin-shell theory and finite element methods, in which microtubules are modeled as hollow tubes. We also find a nonlinear regime and catastrophic collapse of the microtubules under large loads. The main physics of protein shells at the nanometer scale shows simultaneously aspects of continuum elasticity in their linear response, as well as molecular graininess in their nonlinear behavior.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available