4.6 Article

Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 278, Issue 35, Pages 32493-32496

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.C300226200

Keywords

-

Ask authors/readers for more resources

Recently the tuberous sclerosis complex 2 (TSC2) tumor suppressor gene product has been identified as a negative regulator of protein synthesis upstream of the mTOR and ribosomal S6 kinases. Because of the homology of TSC2 with GTPase-activating proteins for Rap1, we examined whether a Ras/Rap-related GTPase might be involved in this process. TSC2 was found to bind to Rheb-GTP in vitro and to reduce Rheb GTP levels in vivo. Over-expression of Rheb but not Rap1 promoted the activation of S6 kinase in a rapamycin-dependent manner, suggesting that Rheb acts upstream of mTOR. The ability of Rheb to induce S6 phosphorylation was also inhibited by a farnesyl transferase inhibitor, suggesting that Rheb may be responsible for the Ras-independent anti-neoplastic properties of this drug.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available