4.7 Article

Mobile genes coding for efflux-mediated antimicrobial resistance in Gram-positive and Gram-negative bacteria

Journal

INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS
Volume 22, Issue 3, Pages 205-210

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0924-8579(03)00202-4

Keywords

antibiotic resistance; efflux systems; multidrug transporters; plasmids; transposons

Ask authors/readers for more resources

Efflux mechanisms that account for resistance to a variety of antimicrobial agents are commonly found in a wide range of bacteria. Two major groups of efflux systems are known, specific exporters and transporters conferring multidrug resistance (MDR). The MDR systems are able to remove antimicrobials of different classes from the bacterial cell and occasionally play a role in the intrinsic resistance of some bacteria to certain antimicrobials. Their genes are commonly located on the bacterial chromosome. In contrast, the genes coding for specific efflux systems are often associated with mobile genetic elements which can easily be interchanged between bacteria. Specific efflux systems have mainly been identified with resistances to macrolides, lincosamides and/or streptogramins, tetracyclines, as well as chloramphenicol/florfenicol in Gram-positive and Gram-negative bacteria. In this review, we focus on the molecular biology of antimicrobial resistance mediated by specific efflux systems and highlight the association of the respective resistance genes with mobile genetic elements and their distribution across species and genus borders. (C) 2003 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available