4.7 Article

Platelets in the immune response: Revisiting platelet-activating factor in anaphylaxis

Journal

JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY
Volume 135, Issue 6, Pages 1424-1432

Publisher

MOSBY-ELSEVIER
DOI: 10.1016/j.jaci.2015.04.019

Keywords

Allergy; anaphylaxis; mast cells; platelet-activating factor; acetylhydrolase; signaling; receptor antagonists; platelets; sepsis; mediators

Ask authors/readers for more resources

Anaphylaxis is an acute, severe, life-threatening multisystem allergic reaction resulting from the sudden systemic release of biochemical mediators and chemotactic substances. Release of both preformed granule-associated mediators and newly generated lipid-derived mediators contributes to the amplification and prolongation of anaphylaxis. Platelet-activating factor (PAF) is a potent phospholipid-derived mediator the central role of which has been well established in experimental models of both immune-mediated and non-immune mediated anaphylaxis. It is produced and secreted by several types of cells, including mast cells, monocytes, tissue macrophages, platelets, eosinophils, endothelial cells, and neutrophils. PAF is implicated in platelet aggregation and activation through release of vasoactive amines in the inflammatory response, resulting in increased vascular permeability, circulatory collapse, decreased cardiac output, and various other biological effects. PAF is rapidly hydrolyzed and degraded to an inactive metabolite, lysoPAF, by the enzyme PAF acetylhydrolase, the activity of which has shown to correlate inversely with PAF levels and predispose to severe anaphylaxis. In addition to its role in anaphylaxis, PAF has also been implicated as a mediator in both allergic and nonallergic inflammatory diseases, including allergic rhinitis, sepsis, atherosclerotic disease, and malignancy, in which PAF signaling has an established role. The therapeutic role of PAF antagonism has been investigated for several diseases, with variable results thus far. Further investigation of its role in pathology and therapeutic modulation is highly anticipated because of the pressing need for more selective and targeted therapy for the management of severe anaphylaxis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available