4.6 Article

The characterization of boron-doped carbon nanotube arrays

Journal

DIAMOND AND RELATED MATERIALS
Volume 12, Issue 9, Pages 1500-1504

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/S0925-9635(03)00181-X

Keywords

nanotubes; p-type doping; chemical vapor deposition; field emission

Ask authors/readers for more resources

In this study, we directly synthesized boron-doped carbon nanotubes (CNTs) by using trimethylborate (B(OCH3)(3)) as doping sources in a microwave plasma chemical vapor deposition system (MPCVD). Doping boron causes the growth rate of CNTs to decrease. This might be due to the high oxygen content contained in the doping source that induces oxidation of graphite. The bamboo-like nanostructure of the carbon tubes disappeared with boron doping. Raman spectrum shows the higher I-D/I-G ratio in boron-doped CNTs. This implies the decrease of graphitization in boron-doped CNTs. In addition, doping boron could enhance the field emission property by increasing the current density by more than 30% (from 350 to 470 mA/cm(2) at 2.2 V/mum). (C) 2003 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available