4.8 Article

Discovery of uncharacterized cellular systems by genome-wide analysis of functional linkages

Journal

NATURE BIOTECHNOLOGY
Volume 21, Issue 9, Pages 1055-1062

Publisher

NATURE RESEARCH
DOI: 10.1038/nbt861

Keywords

-

Ask authors/readers for more resources

We introduce a general computational method, applicable on a genome-wide scale, for the systematic discovery of uncharacterized cellular systems. Quantitative analysis of the coinheritance of pairs of genes among different organisms, calculated using phylogenetic profiles, allows the prediction of thousands of functional linkages between the corresponding proteins. A comparison of these functional linkages to known pathways reveals that calculated linkages are comparable in accuracy to genome-wide yeast two-hybrid screens or mass spectrometry interaction assays. In aggregate, these linkages describe the structure of large-scale networks, with the resulting yeast network composed of 3,875 linkages among 804 proteins, and the resulting pathogenic Escherichia coli network composed of 2,043 linkages among 828 proteins. The search of such networks for groups of uncharacterized, linked proteins led to the identification of 27 novel cellular systems from one nonpathogenic and three pathogenic bacterial genomes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available