4.5 Article

Effect of coupled oscillations on microbubble behavior

Journal

JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
Volume 114, Issue 3, Pages 1678-1690

Publisher

ACOUSTICAL SOC AMER AMER INST PHYSICS
DOI: 10.1121/1.1600721

Keywords

-

Funding

  1. NCI NIH HHS [CA 76062] Funding Source: Medline
  2. NIBIB NIH HHS [EB 00239] Funding Source: Medline

Ask authors/readers for more resources

Ultrasound contrast agents are encapsulated microbubbles whose nonlinear acoustic scattering signatures have been the foundation of their use in diagnostic imaging. The coupled oscillations of microbubbles along their lines of center are investigated theoretically using radial equations in the monopole approximation and an energy balance, which is obtained for the system. Coupled microbubble pairs of different initial radii are investigated numerically relative to the normal modes for the linearized system. For microbubble pairs of different size bubbles driven below the mode of the smaller bubble and above the mode of the larger bubble, it is shown that oscillations of the smaller agent are affected substantially more by the coupling than those of the larger one. For separation distances of 10 and 500 microns, a difference of approximately 10 dB occurs in the second harmonic output of a 1.0-micron radius agent coupled with a 2.2-micron radius agent forced at 2.0 MHz and 0.3 MPa. The subharmonic spectral peak is shown to decrease approximately 19 dB for the coupling of 1.5- and 2.2-micron radius agents at 10- and 500-micron distances under the same acoustic forcing conditions. These coupling effects on the radiated pressure and its spectral power are highlighted for contrast agent imaging applications. (C) 2003 Acoustical Society of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available