4.6 Article

Effects of Baicalein on the Pharmacokinetics of Tamoxifen and its Main Metabolite, 4-Hydroxytamoxifen, in Rats: Possible Role of Cytochrome P450 3A4 and P-glycoprotein inhibition by Baicalein

Journal

ARCHIVES OF PHARMACAL RESEARCH
Volume 34, Issue 11, Pages 1965-1972

Publisher

PHARMACEUTICAL SOC KOREA
DOI: 10.1007/s12272-011-1117-9

Keywords

Tamoxifen; 4-Hydroxytamoxifen; Baicalein; Pharmacokinetics; CYP3A4; P-gp; Rats

Funding

  1. National Research Foundation of Korea [핵C6A3404] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

The purpose of this study was to investigate the effects of baicalein on the pharmacokinetics of tamoxifen and its active metabolite, 4-hydroxytamoxifen, in rats. Tamoxifen and baicalein interact with cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp), and the increase in the use of health supplements may result in baicalein being taken concomitantly with tamoxifen as a combination therapy to treat orprevent cancer diseases. Pharmacokinetic parameters of tamoxifen and 4-hydroxytamoxifen were determined in rats after an oral administration of tamoxifen (10 mg/kg) to rats in the presence and absence of baicalein (0.5, 3, and 10 mg/kg). Compared to the oral control group (given tamoxifen alone), the area under the plasma concentration-time curve and the peak plasma concentration of tamoxifen were significantly increased by 47.6-89.1% and 54.8-100.0%, respectively. The total body clearance was significantly decreased (3 and 10 mg/kg) by baicalein. Consequently, the absolute bioavailability of tamoxifen in the presence of baicalein (3 and 10 mg/kg) was significantly increased by 47.5-89.1% compared with the oral control group (20.2%). The metabolite-parent AUC ratio of tamoxifen was significantly reduced, implying that the formation of 4-hydroxytamoxifen was considerably affected by baicalein. Baicalein enhanced the oral bioavailability of tamoxifen, which may be mainly attributable to inhibition of the CYP3A4-mediated metabolism of tamoxifen in the small intestine and/or in the liver, and inhibition of the P-gp efflux pump in the small intestine and/or reduction of total body clearance by baicalein.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available