4.7 Article

Arbuscular mycorrhizal fungi influence water relations, gas exchange, abscisic acid and growth of micropropagated chile ancho pepper (Capsicum annuum) plantlets during acclimatization and postacclimatization

Journal

JOURNAL OF PLANT PHYSIOLOGY
Volume 160, Issue 9, Pages 1073-1083

Publisher

URBAN & FISCHER VERLAG
DOI: 10.1078/0176-1617-00989

Keywords

acclimatization; endomycorrhiza; gas exchange; micropropagation; pepper; photosynthesis

Categories

Ask authors/readers for more resources

Little is known about the role of arbuscular mycorrhiza fungi (AMF) on physiological changes of micropropagated plantlets during acclimatization and post-acclimatization, Using chile ancho pepper (Capsicum annuum L. cv. San Luis), measurements were made of water relations, gas exchange, abscisic acid (ABA), plantlet growth and AMF development. Plantlets had low photosynthetic rates (A) and poor initial growth during acclimatization. Relative water content (RWC) decreased during the first days after transfer from tissue culture containers to ex vitro conditions. Consequently, transpiration rates (E) and stomatal conductance (g(s)) declined, confirming that in vitro formed stomata were functional and able to respond ex vitro to partial desiccation - thus avoiding excessive leaf dehydration and plant death. Colonization by AMF occurred within 3 days after inoculation. Colonized plantlets had lower leaf ABA and higher RWC than noncolonized (NonAMF) plantlets during peak plant dehydration (6 days after plant transfer) - and a higher A and g(s) as early as days 5 and 7. During post-acclimatization [after day 8, when RWC increased and stabilized], A increased in all plantlets; however, more dramatic changes occurred with AMF plantlets. Within 48 days, 45 % of the roots sampled of inoculated plantlets were colonized and had extensive arbuscule development. At this time, AMF plantlets also had greater E, A, leaf chlorophyll, leaf elemental N, P and K, leaf dry bio-mass and leaf area, fruit production and differences in carbon partitioning [lower root/shoot ratio and higher leaf area ratio] compared with NonAMF plantlets. Rapid AMF colonization enhanced physiological adjustments, which helped plantlets recover rapidly during acclimatization and obtain greater growth during post-acclimatization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available