4.3 Article

Assessment of erosion of the ITER divertor targets during type I ELMs

Journal

PLASMA PHYSICS AND CONTROLLED FUSION
Volume 45, Issue 9, Pages 1523-1547

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0741-3335/45/9/301

Keywords

-

Ask authors/readers for more resources

This paper presents the results of a preliminary assessment conducted to estimate the thermal response and erosion lifetime of the ITER divertor targets clad either with carbon-fibre composite or tungsten during type I ELMs. The one-dimensional thermal/erosion model, used for the analyses, is briefly described. It includes all the key surface heat transfer processes such as evaporation, melting, and radiation, and their interaction with the bulk thermal response, and it is based on an implicit finite-difference scheme, which allows for temperature-dependent material properties. The cases analysed clarify the influence of several ELM parameters on the heat transfer and erosion processes at the target (i.e. characteristic plasma ELM energy loss from the pedestal, fraction of the energy reaching the divertor, broadening of the strike-points during ELMs, duration and waveform of the ELM heat load) and design/material parameters (i.e. inclination of the target, type and thickness of the armour material, and for tungsten only, fraction of the melt layer loss). Comparison is made between cases where all ELMs are characterized by the same fixed averaged parameters, and cases where instead the characteristic parameters of each ELM are evaluated in a random fashion by using a standard Monte Carlo technique, based on distributions of some of the variables of interest derived from experiments in today's machines. Although uncertainties rule out providing firm quantitative predictions, the results of this study are useful to illustrate trends. Based on the results, the implications on the design and operation are discussed and priorities are determined for the R&D needed to reduce the remaining uncertainties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available