4.5 Article

Expression pattern of metalloproteinases and tissue inhibitors of matrix-metalloproteinases in cycling human endometrium

Journal

BIOLOGY OF REPRODUCTION
Volume 69, Issue 3, Pages 976-984

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1095/biolreprod.103.015933

Keywords

female reproductive tract; gene regulation; menstrual cycle

Ask authors/readers for more resources

The cyclic growth, differentiation, and cell death of endometrium represents the most dynamic example of steroid-driven tissue turnover in human adults. Key effectors in these processes-matrix metalloproteinases (MMPs) and their specific inhibitors (TIMPs)-are regulated by ovarian steroids and, locally, by cytokines. We used reverse transcription-polymerase chain reaction to evaluate the expression of both transcriptionally regulated molecules such as estrogen receptor-et, progesterone receptor, and prolactin and a large array of MMPs and TIMPs (MMP-1, -2, -3, -7, -8, -9, -11, -12, -19, -26, MT1-MMP, MT2-MMP, MT3-MMP, TIMP-1, -2, -3). Altogether, three distinct patterns of MMP and two patterns of TIMP expression were detected in cycling endometrium: 1) MMPs restricted to the menstrual period (MMPs-1, -3, -8, -9, -12); 2) MMPs and TIMPs expressed throughout the cycle (MMP-2, MT1-MMP, MT2-MMP, MMP-19, TIMP-1, and TIMP-2); 3) MMPs predominantly expressed during the proliferative phase (MMP-7, MMP-11, MMP-26, and MT3-MMP); and 4) TIMP-3, which, contrary to the other TIMPs, shows significant modulations, with maximum expression during the late secretory and menstrual phases. These specific patterns of MMP expression associated with each phase of the cycle may point to specific roles in the processes of menstruation, housekeeping activities, angiogenesis, tissue growth, and extracellular matrix remodeling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available