4.7 Article

Crystallization and phase separation in blends of high stereoregular poly(lactide) with poly(ethylene glycol)

Journal

POLYMER
Volume 44, Issue 19, Pages 5681-5689

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/S0032-3861(03)00609-8

Keywords

poly(lactide); poly(lactide)/poly(ethylene glycol) blends; aging

Ask authors/readers for more resources

The effect of cooling rate on crystallization and subsequent aging of high stereoregular poly(lactide) (PLA) blended with poly(ethylene glycol) (PEG) was studied by thermal analysis and by direct observation of the solid state structure with atomic force microscopy (AFM). Blending with PEG accelerated crystallization of PLA. When a PLA/PEG 70/30 (wt/wt) blend was slowly cooled from the melt, PLA crystallized first as large spherulites followed by crystallization of PEG. The extent of PLA crystallization depended on the cooling rate, however, for a given blend composition the PEG crystallinity was proportional to PLA crystallinity. The partially crystallized blend obtained with a cooling rate of 30 degreesC min(-1) consisted of large spherulites dispersed in a homogeneous matrix. The blend was not stable at ambient temperature. With time, epitaxial crystallization of PEG on the edges of the spherulites depleted the surrounding region of PEG, which created a vitrified region surrounding the spherulites. Further from the spherulites, the homogeneous amorphous phase underwent phase separation with formation of a more rigid PLA-rich phase and a less-rigid PEG-rich phase. Decreasing the amount of PEG in the blend decreased the crystallization rate of PLA and increased the nucleation density. The amount of PLA crystallinity did not depend on blend composition, however, PEG crystallinity decreased to the extent that PEG did not crystallize in a PLA/PEG 90/10 (wt/wt) blend. (C) 2003 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available