4.3 Article

Effect of fog on sea salt deposition on peat soil in boreal Picea glehnii forests in Ochiishi, eastern Hokkaido, Japan

Journal

ECOLOGICAL RESEARCH
Volume 18, Issue 5, Pages 587-597

Publisher

BLACKWELL PUBLISHING ASIA
DOI: 10.1046/j.1440-1703.2003.00580.x

Keywords

-

Categories

Ask authors/readers for more resources

We investigated seasonal changes in the chemical properties of precipitation (bulk deposition, throughfall and stem flow) in Picea glehnii forests and neighboring Sphagnum communities in three ombrotrophic mires in Ochiishi district, northern Japan, to clarify the contribution of fog to nutrient addition to mires. Na+ and Cl- dominated the bulk deposition, followed by Mg2+, Ca2+ and SO42-, implying an oceanic influence on mire chemistry. Differences in chemical properties among bulk deposition, throughfall and stem flow increased with proximity to the coastline. There was little difference in electrical conductivity (EC) among bulk deposition, throughfall and stem flow during the period of high fog frequency, which was approximately 17 fog days per month from June to August, but there were large differences in EC during the period of low fog frequency, which was approximately 5 fog days per month from September to November. In general, throughfall and stem flow were enriched with Na+, Mg2+, Ca2+, Cl- and SO42- at the P. glehnii canopy, and seasonal trends in ionic concentration showed almost the same trend as EC. This seasonal pattern of atmospheric deposition chemistry showed that sea salt deposition on mires depends on fog occurrence. Sea salt is washed out of the atmosphere by fog when fog covers the forest canopy and, hence, throughfall and stem flow did not lead to the enrichment of chemical constituents during passage through the canopy in these mires during the season of high fog occurrence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available