4.8 Article

Phosphospecific proteolysis for mapping sites of protein phosphorylation

Journal

NATURE BIOTECHNOLOGY
Volume 21, Issue 9, Pages 1047-1054

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nbt863

Keywords

-

Funding

  1. NIBIB NIH HHS [EB001987] Funding Source: Medline

Ask authors/readers for more resources

Protein phosphorylation is a dominant mechanism of information transfer in cells, and a major goal of current proteomic efforts is to generate a system-level map describing all the sites of protein phosphorylation. Recent efforts have focused on developing technologies for enriching and quantifying phosphopeptides. Identification of the sites of phosphorylation typically relies on tandem mass spectrometry to sequence individual peptides. Here we describe an approach for phosphopeptide mapping that makes it possible to interrogate a protein sequence directly with a protease that recognizes sites of phosphorylation. The key to this approach is the selective chemical transformation of phosphoserine and phosphothreonine residues into lysine analogs (aminoethylcysteine and beta-methylaminoethylcysteine, respectively). Aminoethylcysteine-modified peptides are then cleaved with a lysine-specific protease to map sites of phosphorylation. A blocking step enables single-site cleavage, and adaptation of this reaction to the solid phase facilitates phosphopeptide enrichment and modification in one step.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available