4.6 Article

Genetic diversity and molecular markers of the tropical abalone (Haliotis asinina) in Thailand

Journal

MARINE BIOTECHNOLOGY
Volume 5, Issue 5, Pages 505-517

Publisher

SPRINGER
DOI: 10.1007/s10126-002-0108-8

Keywords

abalone; PCR; RAPD; genetic diversity; population differentiation

Ask authors/readers for more resources

Genetic diversity of abalone in Thailand, Haliotis asinina, H. ovina, and H. varia, was analyzed by polymerase chain reaction (PCR) of 18S and 16S rDNAs, with randomly amplified polymorphic DNA (RAPD) and restriction fragment length polymorphism (RFLP). Species-specific RAPD markers were found in each abalone species. Restriction analysis of 18S (nuclear) ribosomal DNA with AluI, TaqI, and HaeIII and 16S (mitochondrial) rDNA with BamHI, EcoRI, HaeIII, and AluI gave 12 and 13 digestion patterns, respectively. A total of 49 composite haplotypes were found. A dendogram obtained by the unweighted pair-group method with arithmetic mean, constructed from divergence between pairs of composite haplotypes, revealed reproductively isolated gene pools of these abalone and indicated that H. asinina and H. ovina are genetically closer than H. varia. When H. varia was discovered owing to small sample sizes, geographic heterogeneity analysis and F-ST estimate indicated clear genetic differentiation between H. ovina originating from the Andaman Sea (west) and the Gulf of Thailand (east, P < 0.0001), whereas partial differentiation was observed between the Philippines and the remaining H. asinina samples (P < 0.0021). The amplified 16S rDNAs of individuals representing composite haplotypes found in this study were cloned and sequenced. A neighbor-joining tree constructed from sequence divergence of 16S rDNA accurately allocated those sequences according to species origins of abalone. Species-specific PCR based on 16S rDNA polymorphism was successfully developed in H. asinina and H. varia but not in H. ovina.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available