4.5 Article

GABAergic control of neuropeptide gene expression in parvocellular neurons of the hypothalamic paraventricular nucleus

Journal

EUROPEAN JOURNAL OF NEUROSCIENCE
Volume 18, Issue 6, Pages 1518-1526

Publisher

BLACKWELL PUBLISHING LTD
DOI: 10.1046/j.1460-9568.2003.02877.x

Keywords

arginine vasopressin; c-Fos; corticotropin-releasing hormone; GABA; organotypic slice culture; rat

Categories

Ask authors/readers for more resources

To assess the functional impact of local inhibitory gamma-aminobutyric acid (GABA)ergic interneuron population on the cellular and transcriptional activity of parvocellular neurosecretory neurons in the hypothalamic paraventricular nucleus (PVH), we followed the expression of corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) genes along with the activation marker c-fos in response to the blockade of GABA-A receptors. First, we analysed the effect of the GABA-A receptor antagonist bicuculline methiodide (BMI) in organotypic cultures of hypothalamic slices. These preparations preserve the cytoarchitecture of CRH-synthesizing cell populations and elements of local interneuronal networks, while remote connections originating from limbic- and brainstem areas are missing. In vitro, BMI resulted in a selective induction of c-Fos immunoreactivity that was localized exclusively to the PVH and upregulated both CRH mRNA and AVP hnRNA levels. Local microinjection of BMI into the paraventricular region of freely moving rats increased the adrenocorticotropin secretion and activated PVH neurons ipsilateral to the injection. c-Fos immunoreactivity was distributed within the PVH and in the perinuclear region, where it appeared in GABAergic and also in non-GABAergic profiles. This treatment induced AVP hnRNA expression in the parvocellular compartment without any reliable stimulation of CRH transcription in the parvocellular- and AVP hnRNA levels in the magnocellular neurons. These results reveal an intrinsic GABAergic mechanism in the PVH microenvironment that by itself, without limbic contribution, impinges a tonic inhibitory influence on the parvocellular CRH neurons in vitro. In vivo, remote inputs are superimposed on the local circuit, allowing differential transcriptional regulation of CRH and AVP genes in the hypophyseotropic neurons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available