4.7 Article

The AMP-activated protein kinase activator AICAR does not induce GLUT4 translocation to transverse tubules but stimulates glucose uptake and p38 mitogen-activated protein kinases α and β in skeletal muscle

Journal

FASEB JOURNAL
Volume 17, Issue 12, Pages 1658-1665

Publisher

FEDERATION AMER SOC EXP BIOL
DOI: 10.1096/fj.02-1125com

Keywords

glucose transport; exercise; contraction; insulin; plasma membrane

Ask authors/readers for more resources

The AMP-activated protein kinase ( AMPK) pathway participates in the metabolic effects of contraction on muscle glucose uptake. We have shown that contraction increases both GLUT4 translocation to the cell surface and p38 mitogen-activated protein kinase ( p38 MAPK) activity. The latter pathway may be involved in the activation of GLUT4. Here we investigated whether the AMPK activator AICAR increases glucose uptake by inducing translocation of GLUT4 and/or by activating the p38 MAPK pathway. AICAR infusion into glucose-clamped rats increased muscle glucose uptake and GLUT4 translocation from an intracellular fraction to the plasma membrane but not to T-tubules. AICAR also caused recruitment of the transferrin receptor to the plasma membrane and increased [I-125]-transferrin uptake in isolated muscle. AICAR treatment in vivo or in vitro activated both p38 MAPKalpha and beta (1.6- to 2.8-fold) in EDL muscles with a time course identical to that of stimulation of AMPK and glucose transport. The p38 MAPK inhibitor SB203580 abrogated the stimulatory effect of AICAR on glucose uptake. These results suggest that AICAR increases muscle glucose uptake by two mechanisms: 1) inducing selective recruitment of GLUT4 to the plasma membrane, and 2) activating p38 MAPKalpha and beta, which may be involved in the activation of GLUT4.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available