4.5 Article

Drosophila Rheb GTPase is required for cell cycle progression and cell growth

Journal

JOURNAL OF CELL SCIENCE
Volume 116, Issue 17, Pages 3601-3610

Publisher

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jcs.00661

Keywords

cell cycle; growth; Drosophila; Rheb; TOR

Categories

Funding

  1. NCI NIH HHS [CA41996, CA32737, CA16042] Funding Source: Medline
  2. NIAID NIH HHS [AI28697] Funding Source: Medline
  3. NICHD NIH HHS [HD09948] Funding Source: Medline

Ask authors/readers for more resources

Precise body and organ sizes in the adult animal are ensured by a range of signaling pathways. In a screen to identify genes affecting hindgut morphogenesis in Drosophila, we identified a P-element insertion in dRheb, a novel, highly conserved member of the Ras superfamily of G-proteins. Overexpression of dRheb in the developing fly (using the GAL4:UAS system) causes dramatic overgrowth of multiple tissues: in the wing, this is due to an increase in cell size; in cultured cells, dRheb overexpression results in accumulation of cells in S phase and an increase in cell size. Using a loss-of-function mutation we show that dRheb is required in the whole organism for viability (growth) and for the growth of individual cells. Inhibition of dRheb activity in cultured cells results in their arrest in G1 and a reduction in size. These data demonstrate that dRheb is required for both cell growth (increase in mass) and cell cycle progression; one explanation for this dual role would be that dRheb promotes cell cycle progression by affecting cell growth. Consistent with this interpretation, we find that flies with reduced dRheb activity are hypersensitive to rapamycin, an inhibitor of the growth regulator TOR. In cultured cells, the effect of overexpressing dRheb was blocked by the addition of rapamycin. These results imply that dRheb is involved in TOR signaling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available