4.4 Article

Cropping intensity enhances soil organic carbon and nitrogen in a no-till agroecosystem

Journal

SOIL SCIENCE SOCIETY OF AMERICA JOURNAL
Volume 67, Issue 5, Pages 1533-1543

Publisher

WILEY
DOI: 10.2136/sssaj2003.1533

Keywords

-

Categories

Ask authors/readers for more resources

Soil organic C (SOC) has decreased under cultivated wheat (Triticum aestivum)-fallow (WF) in the central Great Plains. We evaluated the effect of no-till systems of WF, wheat-corn (Zea Mays)-fallow (WCF), wheat-corn-millet (Panicum miliaceum)-fallow, continuous cropping (CC) without monoculture, and perennial grass (G) on SOC and total N (TN) levels after 12 yr at three eastern Colorado locations. Locations have long-term precipitation averages of 420 mm but increase in potential evapotranspiration (PET) going from north to south. Within each PET location, cropping systems were imposed across a topographic sequence of summit, sideslope, and toeslope. Cropping intensity, slope position, and PET gradient (location) independently impacted SOC and TN to a 5-cm soil depth. Continuous cropping had 35 and 17% more SOC and TN, respectively, than the WF system. Cropping intensity still impacted SOC and TN when summed to 10 cm with CC > than WF. Soil organic C and TN increased 20% in the CC system compared with WF in the 0- to 10-cm depth. The greatest impact was found in the 0- to 2.5-cm layer, and decreased with depth. Soil organic C and TN levels at the high PET site were 50% less than at the low and medium PET sites, and toeslope soils were 30% greater than summit and sideslopes. Annualized stover biomass explained 80% of the variation in SOC and TN in the 0- to 10-cm soil profile. Cropping systems that eliminate summer fallowing are maximizing the amount of SOC and TN sequestered.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available