4.6 Article

Unidirectional electron flow in a nanometer-scale semiconductor channel: A self-switching device

Journal

APPLIED PHYSICS LETTERS
Volume 83, Issue 9, Pages 1881-1883

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1606881

Keywords

-

Ask authors/readers for more resources

By tailoring the boundary of a narrow semiconductor channel to break its symmetry, we have realized a type of nanometer-scale nonlinear device, which we refer to as self-switching device (SSD). An applied voltage V not only changes the potential profile along the channel direction, but also either widens or narrows the effective channel depending on the sign of V. This results in a diode-like characteristic but without the use of any doping junction or barrier structure. The turn-on voltage can also be widely tuned from virtually zero to more than 10 V, by simply adjusting the channel width. The planar and two-terminal structure of the SSD also allows SSD-based circuits to be realized by only one step of lithography. (C) 2003 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available