4.7 Article

Cosmological results from high-z supernovae

Journal

ASTROPHYSICAL JOURNAL
Volume 594, Issue 1, Pages 1-24

Publisher

IOP PUBLISHING LTD
DOI: 10.1086/376865

Keywords

cosmological parameters; cosmology : observations; distance scale; galaxies : distances and redshifts; supernovae : general

Ask authors/readers for more resources

The High-z Supernova Search Team has discovered and observed eight new supernovae in the redshift interval z = 0.3-1.2. These independent observations, analyzed by similar but distinct methods, confirm the results of Riess and Perlmutter and coworkers that supernova luminosity distances imply an accelerating universe. More importantly, they extend the redshift range of consistently observed Type Ia supernovae (SNeIa) to z approximate to 1, where the signature of cosmological effects has the opposite sign of some plausible systematic effects. Consequently, these measurements not only provide another quantitative confirmation of the importance of dark energy, but also constitute a powerful qualitative test for the cosmological origin of cosmic acceleration. We find a rate for SN Ia of (1.4 +/- 0.5) x 10(-4) h(3) Mpc(-3) yr(-1) at a mean redshift of 0.5. We present distances and host extinctions for 230 SN Ia. These place the following constraints on cosmological quantities: if the equation of state parameter of the dark energy is w = -1, then H(0)t(0) = 0.96 +/- 0.04, and Omega(Lambda) - 1.4Omega(M) = 0.35 +/- 0/14. Including the constraint of a. at universe, we find Omega(M) = 0.28 +/- 0.05, independent of any large-scale structure measurements. Adopting a prior based on the Two Degree Field (2dF) Redshift Survey constraint on Omega(M) and assuming a. at universe, we find that the equation of state parameter of the dark energy lies in the range -1.48 < w < -0.72 at 95% confidence. If we further assume that w > -1, we obtain w < -0.73 at 95% confidence. These constraints are similar in precision and in value to recent results reported using the WMAP satellite, also in combination with the 2dF Redshift Survey.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available