4.6 Article

Monocytes initiate a cycle of leukocyte recruitment when cocultured with endothelial cells

Journal

ATHEROSCLEROSIS
Volume 170, Issue 1, Pages 49-58

Publisher

ELSEVIER SCI IRELAND LTD
DOI: 10.1016/S0021-9150(03)00288-0

Keywords

endothelial cells; monocytes; coculture; inflammation; leukocyte adhesion; atherosclerosis

Ask authors/readers for more resources

During the development of atherosclerotic plaque, monocytes and T-lymphocytes are recruited to the arterial intima by endothelial cells (EC) lining the vessel. This process is associated with chronic arterial inflammation and requires the activation-dependent expression of adhesion receptors and chemokines on EC. Here we show that monocytes can activate cocultured EC so that they support the adhesion, activation and transmigration of a secondary bolus of flowing peripheral blood monocytes or lymphocytes. The number of adherent leukocytes and their behaviour was comparable to that seen on EC activated with tumour necrosis factor-alpha (TNF-alpha). Depending upon the duration of endothelial cell/monocyte coculture different patterns of adhesion receptors were utilised by leukocytes. After 4 h coculture, antibodies against E-selectin, P-selectin and vascular cell adhesion molecule-1 (VCAM-1) reduced mononuclear leukocyte adhesion. After 24 It coculture, antibodies against E-selectin and VCAM-1 but not P-selectin were effective. Immunofluorescence analysis confirmed that monocyte coculture induced endothelial expression of E-selectin and VCAM-1, while P-selectin was at the limit of detection. We conclude that EC stimulated by monocytes can support the adhesion of flowing mononuclear leukocytes. We hypothesise that this mode of EC activation and leukocyte recruitment could initiate a self-perpetuating cycle of inflammation that could be relevant to atherogenesis and other chronic inflammatory disease states. (C) 2003 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available