4.6 Article

Deposition and characterization of a self-propagating CuOx/Al thermite reaction in a multilayer foil geometry

Journal

JOURNAL OF APPLIED PHYSICS
Volume 94, Issue 5, Pages 2915-2922

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1598296

Keywords

-

Ask authors/readers for more resources

Self-propagating formation reactions have been studied in multilayer foils and they are currently being investigated for applications in joining and ignition. Here, we introduce a reactive multilayer foil which contains a reduction-oxidation thermite reaction between CuOx and Al. Typically in reactive multilayer foils, elemental layers react and form a single intermetallic product. In this thermite reaction, however, aluminum and copper oxide are, respectively, oxidized and reduced and form aluminum oxide and copper. The fully dense multilayer foils provide a well-defined geometry for studying the thermodynamics, kinetics, and intermediate phase formation in the CuOx/Al thermite reaction. Here, sputter deposition of CuOx/Al multilayer foils is demonstrated, and x-ray diffraction and transmission electron microscopy, including high resolution transmission electron microscopy and electron spectroscopic imaging, are used to characterize the as-deposited foil and the final products. The heat released in the reaction is quantified using differential thermal analysis, and the velocity of the self-propagating reaction is reported. (C) 2003 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available