4.4 Article Proceedings Paper

Imaging individual atoms inside crystals with ADF-STEM

Journal

ULTRAMICROSCOPY
Volume 96, Issue 3-4, Pages 251-273

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0304-3991(03)00092-5

Keywords

ADF-STEM; Z-contrast; impurity atoms; electron channeling

Categories

Ask authors/readers for more resources

The quantitative imaging of individual impurity atoms in annular dark-field scanning transmission electron microscopy (ADF-STEM) requires a clear theoretical understanding of ADF-STEM lattice imaging, nearly ideal thin samples, and careful attention to image processing. We explore the theory using plane-wave multislice simulations that show the image intensity of substitutional impurities is depth-dependent due to probe channeling, but the intensity of interstitial impurities need not be. The images are only directly interpretable in thin samples. For this reason, we describe a wedge mechanical polishing technique to produce samples less than < 50 Angstrom thick, with low surface roughness and no amorphous surface oxide. This allows us to image individual dopants as they exist within a bulk-like silicon environment. We also discuss the image analysis techniques used to extract maximum quantitative information from the images. Based on this information, we conclude that the primary nanocluster defect responsible for the electrical inactivity of Sb in Si at high concentration consists of only two atoms. (C) 2003 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available