3.9 Article

Androgen receptor represses the neuroendocrine transdifferentiation process in prostate cancer cells

Journal

MOLECULAR ENDOCRINOLOGY
Volume 17, Issue 9, Pages 1726-1737

Publisher

ENDOCRINE SOC
DOI: 10.1210/me.2003-0031

Keywords

-

Funding

  1. NCI NIH HHS [CA58204, 1R33CA-93302] Funding Source: Medline
  2. NIDDK NIH HHS [DK62821] Funding Source: Medline

Ask authors/readers for more resources

Androgen-ablation therapy is an effective method for treating prostate cancer. However, prostate tumors that survive long-term androgen-ablation therapy are classified as androgen-independent as they proliferate in the absence of androgens, and they tend to be enriched for neuroendocrine (NE) cells. Androgen withdrawal causes androgen-dependent prostate cancer cells to adopt a pronounced NE phenotype, suggesting that androgen receptor (AR) represses an intrinsic NE transdifferentiation process in prostate cancer cells. In this report we show that short interfering RNA-induced AR silencing induced a NE phenotype that manifested itself in the growth of dendritic-like processes in both the androgen-dependent LNCaP and androgen-independent LNCaP-Al human prostate cancer cells. Western blot analysis revealed that neuronal-specific enolase, a marker of the neuronal lineage, was increased by AR knockdown in LNCaP cells. The expression levels of the neuronal-specific cytoskeletal proteins beta-tubulin III, nestin, and glial acidic fibrillary protein were also characterized in AR knockdown cells. Most interestingly, AR silencing induced beta-tubulin III expression in LNCaP cells, while AR knockdown increased glial acidic fibrillary protein levels in both LNCaP and LNCaP-Al cells. Lastly, AR silencing reduced the proliferative capacity of LNCaP and LNCaP-Al cells. Our data demonstrate that AR actively represses an intrinsic NE transdifferentiation process in androgen-responsive prostate cancer cells and suggest a potential link between AR inactivation and the increased frequency of NE cells in androgen-independent tumors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available