4.4 Article

Regulation of expression of the paralogous Mlp family in Borrelia burgdorferi

Journal

INFECTION AND IMMUNITY
Volume 71, Issue 9, Pages 5012-5020

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/IAI.71.9.5012-5020.2003

Keywords

-

Funding

  1. NIAID NIH HHS [T32-AI07520, R01 AI045538, T32 AI007520, AI-45538] Funding Source: Medline

Ask authors/readers for more resources

The Mlp (multicopy lipoproteins) family is one of many paralogous protein families in Borrelia burgdorferi. To examine the extent to which the 10 members of the Mlp family in B. burgdorferi strain 297 might be differentially regulated, antibodies specific for each of the Mlps were developed and used to analyze the protein expression profiles of individual Mlps when B. burgdorferi replicated under various cultivation conditions. All of the Mlps were upregulated coordinately when B. burgdorferi was cultivated at either elevated temperature, reduced culture pH, or increased spirochete cell density. Inasmuch as the expression of OspC is influenced by a novel RpoN-RpoS regulatory pathway, similar induction patterns for OspC and the Mlp paralogs prompted an assessment of whether the RpoN-RpoS pathway also was involved in Mlp expression. In contrast to wild-type B. burgdorferi, both RpoN- and RpoS-deficient mutants were unable to upregulate OspC or the Mlp paralogs when grown at lower pH (6.8), indicating that pH-mediated regulation of OspC and Mlp paralogs is dependent on the RpoN-RpoS pathway. However, when RpoN- or RpoS-deficient mutants were shifted from 23degreesC to 37degreesC or were cultivated to higher spirochete densities, some induction of the Mlps still occurred, whereas OspC expression was abolished. The combined findings suggest that the Mlp paralogs are coordinately regulated as a family and have an expression profile similar, but not identical, to that of OspC. Although Mlp expression as a family is influenced by the RpoN-RpoS regulatory pathway, there exists at least one additional layer of gene regulation, yet to be elucidated, contributing to Mlp expression in B. burgdorferi.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available