4.6 Article

Neural network modeling and analysis of the material removal process during laser machining

Journal

Publisher

SPRINGER LONDON LTD
DOI: 10.1007/s00170-002-1441-9

Keywords

laser micro-machining; pulse energy; crater geometry; artificial neural network

Ask authors/readers for more resources

To manufacture parts with nano- or micro-scale geometry using laser machining, it is essential to have a thorough understanding of the material removal process in order to control the system behaviour. At present, the operator must use trial-and-error methods to set the process control parameters related to the laser beam, motion system, and work piece material. In addition, dynamic characteristics of the process that cannot be controlled by the operator such as power density fluctuations, intensity distribution within the laser beam, and thermal effects can significantly influence the machining process and the quality of part geometry. This paper describes how a multi-layered neural network can be used to model the nonlinear laser micro-machining process in an effort to predict the level of pulse energy needed to create a dent or crater with the desired depth and diameter. Laser pulses of different energy levels are impinged on the surface of several test materials in order to investigate the effect of pulse energy on the resulting crater geometry and the volume of material removed. The experimentally acquired data is used to train and test the neural network's performance. The key system inputs for the process model are mean depth and mean diameter of the crater, and the system outputs are pulse energy, variance of depth and variance of diameter. This study demonstrates that the proposed neural network approach can predict the behaviour of the material removal process during laser machining to a high degree of accuracy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available