4.7 Article

Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin

Journal

CIRCULATION RESEARCH
Volume 93, Issue 5, Pages 421-428

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.RES.0000089258.40661.0C

Keywords

electrophysiology; cell culture; cardiac fibroblasts; fibrosis; gap junctions

Ask authors/readers for more resources

Roughly half of the cells of the heart consist of nonmyocardial cells, with fibroblasts representing the predominant cell type. It is well established that individual cardiomyocytes and fibroblasts in culture establish gap junctional communication at the single cell level (short-range interaction). However, it is not known whether such coupling permits activation of cardiac tissue over extended distances (long-range interaction). Long-range interactions may be responsible for electrical synchronization of donor and recipient tissue after heart transplantation and may play a role in arrhythmogenesis. This question was investigated using a novel heterocellular culture model with strands of cardiomyocytes interrupted by cardiac fibroblasts over defined distances. With use of optical recording techniques, it could be shown that impulse propagation along fibroblast inserts was successful over distances up to 300 mum and was characterized by length-dependent local propagation delays ranging from 11 to 68 ms (apparent local conduction velocities 4.6 +/- 1.8 mm/s, n = 23). Involvement of mechanical stretch in this phenomenon was excluded by showing that inserts consisting of communication-deficient HeLa cells were incapable of supporting propagation. In contrast, HeLa cells expressing connexin43 permitted impulse conduction over distances as long as 600 mum. Immunocytochemistry showed that fibroblasts and cardiomyocytes expressed connexin43 and connexin45, whereas connexin40 was absent. These results illustrate that fibroblasts of cardiac origin are capable of synchronizing electrical activity of multicellular cardiac tissue over extended distances through electrotonic interactions. This synchronization is accompanied by extremely large local conduction delays, which might contribute to the generation of arrhythmias in fibrotic hearts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available